Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.

نویسندگان

  • Lizeng Gao
  • Jie Zhuang
  • Leng Nie
  • Jinbin Zhang
  • Yu Zhang
  • Ning Gu
  • Taihong Wang
  • Jing Feng
  • Dongling Yang
  • Sarah Perrett
  • Xiyun Yan
چکیده

Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles.

We demonstrate that Co(3)O(4) nanoparticles (NPs) exhibit intrinsic peroxidase-like activity and catalase-like activity. The peroxidase-like activity of the Co(3)O(4) NPs originates from their ability of electron transfer between reducing substrates and H(2)O(2), not from ˙OH radical generated. As peroxidase mimetics, Co(3)O(4) NPs were used for colorimetric determination of H(2)O(2) and glucose.

متن کامل

Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination.

Hydrogen peroxide (H2O2) is a "green chemical" that has various cleaning and disinfectant uses, including as an anti-bacterial agent for hygienic and medical treatments. However, its efficacy is limited against biofilm-producing bacteria, because of poor penetration into the protective, organic matrix. Here we show new applications for ferromagnetic nanoparticles (Fe3O4, MNPs) with peroxidase-l...

متن کامل

Peroxidase-Like Catalytic Activity of Ag3PO4 Nanocrystals Prepared by a Colloidal Route

Nearly monodispersed Ag3PO4 nanocrystals with size of 10 nm were prepared through a colloidal chemical route. It was proven that the synthesized Ag3PO4 nanoparticles have intrinsic peroxidase-like catalytic activity. They can quickly catalyze oxidation of the peroxidase substrate 3, 3, 5, 5-tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue color. The catalysis reaction follow...

متن کامل

Enzyme-like activity of nanomaterials.

Due to possessing an extremely small size and a large surface area per unit of volume, nanomaterials have specific characteristic physical, chemical, photochemical, and biological properties that are very useful in many new applications. Nanoparticles' catalytic activity and intrinsic ability in generating or scavenging reactive oxygen species in general can be used to mimic the catalytic activ...

متن کامل

Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose.

Water-soluble cupric oxide nanoparticles are fabricated via a quick-precipitation method and used as peroxidase mimetics for ultrasensitive detection of hydrogen peroxide and glucose. The water-soluble CuO nanoparticles show much higher catalytic activity than that of commercial CuO nanoparticles due to their higher affinity to hydrogen peroxide. In addition, the as-prepared CuO nanoparticles a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 2 9  شماره 

صفحات  -

تاریخ انتشار 2007